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1. INTRODUCTION

The computation of a detailed geoid, or of a detailed gravity poten-

tial field, in limited areas, especially in mountainous regions, has not

been very much in the focus of attention recently. There may be various S

reasons for this.

For two decades now, global geoid determinations, either from satel-

lite data or from a combination of satellite and gravimetric data have been

in the center of interest (cf. Lerch, et al., 1979; Reigber, et al., 1983; -

Rapp, 1981). Even (almost) purely gravimetric global geoids have been

successfully computed (cf. March and Chang, 1979).

Over the oceans, the geoid is now known to an accuracy of perhaps +1

or +2m, due to satellite altimetry. Unfortunately, satellite altimetry

does not work over land areas. The classical method for a detailed geoid

determination on the continents is the gravimetric method, in spite of the

fact that it is severely handicapped by lack of an adequate gravity

coverage (or lack of information on such a coverage). Thus we have the

paradoxical situation that on the oceans, long a stepchild of geodesy, the

geoid is now in general known much better than on the continents.

Still, the gravimetric method has continued to fascinate theoreticians

because it gives rise to very interesting and deep mathematical problems,

related to the geodetic boundary-value problem, or problem of Holodensky

(cf. Moritz, 1980, Part D). In the recent years, the combination of satel-

lite altimetry on sea and gravimetry on land has led to another interesting

boundary-value problem, the altimetry-gravimetry boundary-value problem

(cf. Sanso, 1983).

These enormous practical and theoretical developments concerning

global satellite and gravimetric gravity field determination have somewhat

overshadowed the determination of detailed geoids in smaller areas.

Especially in mountainous regions, such local geoid determinations are

difficult. The gravimetric method does not work very well in high

mountains. The astrogeodetic method, using astronomical ohsprvations of

9



latitude and longitude, does work well there, but is considered time-

consuming and somewhat old-fashioned, perhaps also because working during

the night is not very popular nowadays. An appropriate use of gravity and

astrogeodetic data in high mountains must involve some topographic-

isostatic reduction, which is also sometimes considered old-fashioned.

Furthermore, the theory behind the astrogeodetic method is not nearly as

attractively difficult as the theory of Molodensky's problem. Last but not

least, high-mountain areas are exceptional and, apart from such countries

as Switzerland and Austria, are frequently regions of little economic

interest. For these and similar reasons, the main stream of geodetic

practice and theory has flown with grand indifference around high

mountains, ignoring such trivial obstacles.

Still, a country such as Switzerland has made a virtue out of neces- P

sity and has traditionally ceen very active in local astrogeodetic geoid

determination (Elmiger, 1969; Gurtner, 1978; Gurtner and Elmiger, 1983).

Recently, Austria has followed up (Lichtenegger, et al., 1983). It has

been found that, even besides the problem of getting the required P

ohservations, the underlying theory is not so trivial as one might think

ind shows quite interesting features.

Concerning measurements, astronomical observations have again proved

very feasible in mountains; see the articles by Erker, Bretterbauer,

Lichtenegger and Chesi in Chapter 2 of (Lichtenegger, et al., 1983). The

main advantages of astrogeodetic versus gravimetric data for local geoid

determination in mountain regions may be summarized as follows:

1. It is sufficient to have astrogeodetic deflections of the verti-

cal in the region of geoid determination; no data are needed outside that

region as they would he in the gravimetric method.

2. Errors in the topographic height have significantly less influ-

ence on deflections than on gravity data. Thus a relatively crude terrain

model will he sufficient for the use of astrogeodetic data.

As a matter of fact, the two types of data are not mutually exclusive;

an optimal geoid determination will combine astrogeodetic deflections of

the vprtical, gravity anomalies, and possibly data of other type. A suita-

ble technique for this purpose is least-squares collocation.
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From the observational point of view it is interesting to note that

inertial surveying techniques will be able to furnish deflections of the

vertical and gravity anomalies rapidly and with sufficient accuracy for

many purposes.

Let us finally try to give a list of various methods of geoid de-

termination:

conventional satellite techniques (doppler, laser, etc.)

satellite-to-satellite tracking

satellite gradiometry

satellite altimetry

aerial gradiometry

gravimetry

astrogeodesy

As a general rule, these methods are listed in such a way as to start with

the most global and end up with the most local method, that is, according

to decreasing globality or increasing locality. In general, going down the

list also corresponds to increasing resolution and accuracy.

Again it should be stressed that these methods complement each other

and should be combined for best results.

The present report deals primarily with the lower end of the list,

providing a detailed theory of local geoid determination in areas with dif-

ficult topography. The role (and necessity) of topographic-isostatic re-

duction is investigated in detail. The computations for Austria give con-
crete numerical results for questions which have been much discussed theo-

retically, such as the difference between geoidal heights and height ano-

malies according to Holodensky (quasigeoidal heights), or the numerical

effect of analytical continuation from the earth's surface to sea level.

L
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2. Definitions

earth's surface

-- telluroid

actual level
surface

C normal level
surface

normal plumb line actual, plumb tine
(curved)

ellipsoidal normal .-

(straight)

P. 0 W W .
geoid

U=W
ellipsoid

FIGURE 1. The basic geometry
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Fig. 1 illustrates the basic quantities. In the classical theory, the

geoid is defined by its deviation N from a reference ellipsoid; N is

the geoidal height. The geoid is a level surface V1 = Wo = const. of the

gravity potential W ; the ellipsoid is defined to be the level surface U

= Uo = const. of a normal gravity potential U ; the constants V1 and U 00 o

are usually assumed to be equal. Cf. PG, sec. 2-131).

For the modern theory according to Molodensky (PG, sec. 8-3), to each

point P of the earth's surface we associate a point Q in such a way

that 0 lies on the straight ellipsoidal normal through P and that .6

U(Q) = W(P) . (1)

That is, Q is defined such that its normal potential U equals the

actual potential W of P

This corresponds to the classical relation

Uo = U(Qo) = W(P) = W (2)

mentioned above, by which IJ is taken to be equal to W ; cf. Fig. 1.
0 0

By the same correspondence, the height anomaly according to !olodensky,

=QP , 
(3)

is the modern equivalent of the classical geoidal height,

N Q oPo (4)

0 0

1) Ry the symbol PG we shall in the sequel denote the hook

"Physical Geodesy" (Heiskanen and Moritz, 1967).
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Using the anomalous potential

T=W-U, (5)

we have according to Bruns' theorem

Q Qo0

y denoting ellipsoidal normal gravity.

The points P form the geoid, and the points Q constitute the
0 0

ellipsoid, hoth being level surfaces (of W and Ii , respectively). On

the other hand, the points P form the earth's surface, and the set of

points 0 defines an auxiliary surface, denoted as telluroid according

to R. A. Hirvonen. As a matter of fact, neither the earth's surface nor

the Telluroid are level surfaces, which makes matters more complicated than

in the classical situation, where we deal with level surfaces.

Following a suggestion of Molodensky, one could plot the height

anomalies r as vertical distances from the reference ellipsoid. Thus one

ohtains a geoid-like surface, the quasi-geoid, and could he considered

as quasi-geoidal heights. In contrast to the geoid, however, the quasi-

geoid is not a level surface and does not admit of a natural physical

interpretation. Therefore, working with height anomalies , it is best

to consistently consider them quantities referred to the earth's surface

(vertical distances between earth surface and telluroid), rather than using

the quasi-geoidal concept.

The classical gravity anomaly go at sea level is defined as

Ago = g(P0 ) - Y(Qo) (7)
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where g denotes gravity and y , normal gravity. (So far, g(Po) de-

notes the actual gravity on the geoid; we are not yet considering mass-

transporting gravity reductions.)

Analogously we have according to Molodensky:

Ag = g(P) - y(Q)

Generally we shall, as far as feasible, use the subscript "o" to de-

signate quantities referred to sea level, to distinguish them from

quantities referred to the earth's surface, which do not carry such a sub-

script. For instance, Ao refers to sea level and Ag , to the earth's

surface.

Regarding plumb-line definition, we must distinguish three lines (Fig.
1):

(a) The straight ellipsoidal normal Q0P

(b) The actual plumb-line P"P
0

(c) The normal plumb-line P'P
0

The ellipsoidal normal is geometrically defined as the straight line

through P perpendicular to the ellipsoid. The (actual) plumb line is de-

fined by the condition that, at each point of the line, the tangent

coincides with the gravity vector g at that point; the plumb line is

very slightly curved, but its curvature is irregular, being determined by

the irregularities of topographic masses. The normal plumb line, at each

of its points, is tangent to the normal gravity vector y ; it possesses a

curvature that is even smaller and completely regular.

The points P 0 P' , and P' coincide within a few decimeters,

and we shall not distinguish them in the sequel. The reason is that the

distance, in seconds of arc, between P and Po' , is much smaller than
0 0

the effect of plumb line curvature (PG, p. 180-181). The same holds, of

course, for Qo , Qo, and 0Q'.
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The direction of the gravity vector g is the direction of (the

tangent to) the plumb line. It is determined by two angles, the
astronomical latitude 4D and the astronomical longitude A . Let 0 , A
he referred to the earth surface (to point P ) and 00 A to the

geoid (strictly speaking, to point P" ). The differences
0

- , 6AA - A (9)
0 0

PS
" - q

00 -parallel to
equatorial plane

L

FIGURE 2. Curvature of the plumb line along a north-south profile

~1
A



9

express the effect of plumb-line curvature (Fig. 2). Hence we have

0, A =A+6A (10)

Knowing the plumb-line curvature ( 60 , 6A ), we could use these simple

formulas to compute the sea-level values Oo A from the observed

surface values 0 , A

In the same way as 0 , A are related to the actual plumb line, the

geodetic latitude cb and the geodetic longitude X refer to the straight

ellipsoidal normal. The quantities

n = (A-X )cosO (11)

are the components of the deflection of the vertical in a north-south and

an east-west direction. For an arbitrary azimuth a , the vertical de-

flection E is given by

e = cosa + nsina (12)

These quantities , , refer to the earth's surface. Cf. Fig. 1,

which shows E

Similarly we have for the geoid

(13)0o = D 0o - o =  (Ao " X)cos

co & o sa + 0oSina(1)L
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See again Fig. I for E , noting that we do not distinguish the normals0

in 0 and Q' as we have mentioned above.
0 0
In addition, we need the normal direction of the plumb line at the

surface point P ; it is defined as the tangent to the normal plumb line

at P the corresponding latitude and longitude will be denoted by

A . Hence we have

+X+6X , (15)

where S 6X express the normal plumb-line curvature. These equations

are the "normal equivalent" to (10): the "normal surface values" , .

correspond to the "actual surface values" (D A and the ellipsoidal

values X , correspond to the geoidal values ( ' A " (To make

the analogy complete, we should replace W = o(Po) by (P') , hut we

have consistently been neglecting such differences.)

In marked contrast to the actual plumb-line curvature, it is very easy

to compute the normal curvature of the plumb line: by PG, p. 196 we have

5= -O.17''hkmsin 2  , 6X 0 ,(16)

hkm denoting elevation in kilometers.

Since the ellipsoidal normal and hence ' , A are geometrically

defined, we may call the quantities (11) "geometric deflections of the

vertical" at the earth's surface. On the other hand, the normal plumb line

is physically (or dynamically) defined by means of the external gravity

field of an equipotential ellipsoid. Hence also , A are dynamically

defined, and we may call the quantities obtained by replacing X , by

n- ,( A-A )cos , (17)



"dynamical deflections of the vertical" at the earth's surface. By (15)

and (16) we have

since 6X=0*For an azimuth cL we accordingly have

(19)
e Ccst + flsiflc

Compare c and T~ in Fig. 1, and note that in this figure, 6 denotes

the curvature of the normal plumb line for the azimuth a' given by the

analogous formula

606coscL + (6Xcoso)sint 6 &coscc (20)
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3. Astronomical Leveling

plumb ellipsoidal
line normal

geoid

dN
CO

N

ds
-'ellipsoid

FIGURE 3. Astronomical Leveling according to Helmert

From Fig. 3 we take the well-known differential relation

dN= ds (21)

Co denoting the deflection of the vertical at the geoid. Integration

between two points A and B yields the difference between their geoidal

heights:

B (22)
NB A

or approximately,

A EB (23)iB - A -2 SAB '" -
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where SAB denotes the horizontal distance between A and B. The minus

sign is conventional.

earth's surface

.dh

SS

ds

FIGURE 4. Astronomical leveling according to Molodensky

A corresponding relation to height anomalies according to Molodensky 1 .

is found as follows (tiolodensky, et al., 1962, p. 125):

d = _ ds + dh (24)
as'

notations following Fig. 4. Since the earth's surface is not a level sur-

face, we also have a vertical part ( aC/ah ) h in addition to the

usual horizontal part ( ac/as ) ds . The vertical part arises frnm

change in height and is usually smaller than the horizontal part.

In analogy to (21), the horizontal part is given by

.

I
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E denoting the dynamical deflection of the vertical at the earth's

surface; cf. (19) and Fig. 1. For the vertical part we have by (6);

I -3 -=T - ... 1 T (26)
Ah ah ~y y ah y a

or

_ (27)
ah -y

according to the fundamental equation of physical geodesy (PG, p. 298, eq.

8-20)).

Hence (24) hecomes

de = -Tds - gY dh (28)

Y

On integrating this relation we get the difference of the height anomaly

B 'Ads - B 2 dh ;(29)

' A Af Af

The gravity anomaly Ag refers to the earth's surface according to (8).

The first term on the right-hand side represents the Helmert integral (22)

of the surface deflection e , and the second term is tiolodensky's

correction to the Helmert integral, necessary to obtain height anomalies.

This correction depends on the gravity g at the earth's surface.
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4. Reduction for Plumb-Line Curvature

For Helmert's formula (22), the deflection component ec refers to

the geoid. In fact, by (13) and (14) we have

o= (It -0)cosa + (A0 -X)cososina (30)

where the astronomical coordinates D ' A are taken at the geoid and
0 0

given by (10):

0o +  60 Ao  A + 6A 
(31)

Thus the astronomically measured surface values @ , A must be reduced

to sea level by applying corrections 0@ , 6A for plumb-line curvature.

These corrections may be expressed by

3 (0 6Acos= a(0C) (32)
ax ' = y

where OC denotes the orthometric correction in leveling and the local

axes x and y are horizontal and directed towards north and east, res-

pectively. Thence follows (PG, p. 195):

60= H + - tanBl  cos : - - : g  tan6 2  (33)
ax g 9 3y2

Here, H denotes the orthometric height (the length of the curved plumb

line segment P P in Fig. 1), g is the mean value of gravity along the

plumb line between Po and P , and 21 and 2 designate the an-

gles of inclination of a terrain profile in a north-south and an east-west

direction.
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Using these formulas, we thus have first to differentiate the ortho-

metric correction in a horizontal direction (by (32)) and then to integrate

by the Helmert formula (22). As a matter of fact, differentiation and sub-

sequent integration should give back the original quantity, but they will

in general fail to do so exactly because of inaccuracies inherent in the

processes of numerical differentiation and integration.

Thus it is preferable to apply the orthometric correction directly to

the geoidal height difference: by PG, pp. 200-201 we have

N - N eds -OCAB (34)

where OCAB denotes the orthometric correction along the profile AB

and is the "geometric deflection of the vertical" at the earth's surface

given by (11) and (12); cf. a corresponding remark at the end of Sec. 1.

Eq. (34) thus represents a classical analogue of the Molodensky

formula (29). This analogy is particularly conspicuous if we write (34) in

differential form, using (32) and (33):

dN : -Eds + d - -g dH . (35)

The comparison of this expression with its analogue (28) shows as the

main difference the fact that (35) contains mean gravity g . Now,

y is the average of all values of gravity along a plumb-line between

sea level and earth's surface, and gravity inside the earth cannot be

measured, nor can it be computed rigorously because the rock density p

inside the earth is unknown. Thus g cannot be determined with

complete rigor.

This is the point where Molodensky's criticism of the classical theo-

ries of physical geodesy enters. This criticism is fully justified from a

conceptual point of view and has been extremely fruitful for the de-

velnpment of modern theoretical geodesy. On the other hand, from a practi-

cal point of view, we may say that, with a reasonably realistic
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density model, mean gravity " and hence orthometric heights H

and geoidal heights N can be computed quite well with satisfactory

accuracy; cf. the simple estimates in PG, p. 169.

I-,.

I-

L

L

I- -. '

Lk

L.
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5. Approximate Reduction for Plumb-Line Curvature

A sufficiently precise determination of plumb-line curvature according

to (33) or of the orthometric correction in (34) is rather cumbersome,

however.

An approximate procedure (Elmiger, 1969; Gurtner, 1978) uses an

analogy to classical gravity reduction, applied to the direction of the

gravity vector: gravity reduction is applied to the magnitude g of the

gravity vector g.

.-

earth's surface

P (geoid)

FIGURE 5. The geometry in gravity reduction
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Consider first the gravity reduction of Poincare-Prey (PG, p. 165);

cf. Fig. 5. It consists of the following three steps:

1. The topographic masses, i.e., the masses above the geoid, are re-

moved computationally by subtracting its attraction AT  from the oh-

served gravity value g at the surface point P

2. The reduced gravity value g - AT so obtained at P is trans-

ferred to point P0 at sea level by adding the free-air reduction

F.

3. The topographic masses are restored by addirg its attraction

AT at Po
The result of these three steps,

=g oA +F+A0 (36) pgo g T +  
T

gives actual gravity g0  on the geoid. A weak point of the procedure

(apart from errors in AT and AT due to imperfect knowledge of

density p ) is the computation of the free-air reduction' F by the

formula

F = - H--(37)

replacing the vertical gravity gradient of the actual gravity field (after

removal of the topographic masses) by the normal gravity gradient ay/)h.

The astronomical coordinates P and A (defining the direction of

the gravity vector j can be treated in complete analogy. Let FIT he

the & component of the deflection of the vertical at P as computed from

the topographic masses only. Let further be T0 the corresponding

topographic deflection of the vertical at P . In complete analogy to
0

the three steps mentioned above we have now:

1) So called because after the removal of the topographic masses, the

point P lies "in free air".

S

-9
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measured at P .................................................. D

1. removal of

topography, at P ........................................... CT

2. "free-air reduction" P - Po

= normal plumb-line curvature .............................. 50

3. restoration of

topography, at Po ......................................... 0

The result of these three steps,

:+ o + 
(38)0o ¢ T + 6 T T

thus gives the astronomical latitude o at the geoid. This formula is

completely analogous to (36).

The comparison of (38) with (10) yields, for the actual plumb-line

curvature 0@ , the approximate expression

6( O + (39)
=" T +  T +

where 60 denotes the normal plumb-line curvature (16). By (10), (11),

and (13) we thus get for the vertical deflection at the geoid:

o o - - + 6D + 6 , (40)

with an analogous equation for the component ro

Within the accuracy of this procedure we thus obtain actual vertical

deflections on the geoid, in the same way as the Poincare-Prey reduction

gives actual gravity on the geoid. Hence we may apply to % , %0 the
Helmert formula (22) to get differences of the geoidal height N .

If we have a reasonably realistic density model for the topographic

masses, we can compute T , rIT and 0 , r0 with an accuracy

which might he satisfactory for many purposes. The weak point of the
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procedure, in the same way as for gravity reduction, is the computation of

the "free-air reduction" of the plumb line by applying the normal

plumb-line curvature.

Physically this implies the assumption that, after the removal of the

topographic masses, the earth's crust is "regularized" to such an extent

that its external gravity field will then be approximately equal to the

normal ellipsoidal gravity field. This assumption would mean that the

co-geoid of the Bougner reduction (PG, sec. 3-3) coincides with the

reference ellipsoid. In fact, however, these co-geoid heights are, by an

order of magnitude, larger than the actual geoid heights (Helmert, 1884,

pp. 354-57; PG, sec. 3-6). It is true that these large cogenidal heights

have a smooth and regional behavior and thus affect the local plumb-line

curvature to a lesser degree, but the assumption of a normal plumb-line

curvature is nevertheless rather questionable.

Topographic-isostatic reduction. A considerably better

"regularization" of the earth's crust may be expected from the application

of a topographic-isostatic reduction. The large regional features of the

co-geoid are essentially reduced in this way. The important step is to

take some isostatic model, and it is not so essential which isostatic model

is taken; a conventional Airy-Heiskanen model with T = 30km (PG, Sec.

3-5) may he satisfactory in many cases.

Physically, a topographic-isostatic reduction means that the

topographic masses (above the geoid) are computationally removed and used

to fill the mass deficiencies which exist below sea level according to the

theory of isostasy. If the isostatic compensation were exact, the earth's

crust would become completely homogeneous after such an isostatic

reduction, so that the irregularities of the geoid would disappear after

reduction: the isostatic co-geoid would, theoretically, coincide with the

reference ellipsoid. In reality, of course, no isostatic model exactly

corresponds to the actual geological situation, so that, rather than - -

coinciding with the ellipsoid, the isostatic co-geoid will deviate less and

more smoothly from the ellipsoid than the geoid does. Thus the

topographic-isostatic reduction achieves a considerable smoothing of

geoidal heights and, especially, of deflections of the vertical; cf. Sec.

10.
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For the present purpose it is of particular interest that also the -

curvature of the plumb-line will be smoothed by the topographic-isostatic

reduction. In this way it will certainly become closer to normal plumb-

line curvature than with a mere removal of the topographic masses.

Therefore it is appropriate to modify the reduction procedure given at

the beginning of the present section, in such a way that in Step 1 the

topography is not merely removed completely but that it is transported into

the interior of the geoid in order to make up the isostatic mass de-

ficiencies. This procedure has to be reversed in Step 3 in order to re-

store the original topography. By this we achieve that the free-air re-

duction by means of the normal plumb-line curvature (Step 2) appears to be

better justified.

For our computation this means that the vertical deflections CT

nT , computed from the topographic masses, are to be replaced by de-

flections ;TI nTI representing the combined effect of the

topographic masses and their isostatic compensation. The numerical com-

putation is done by the same formulas as for ET , TT by dividing

the topographic and compensating masses into vertical prisms, if possible

using a digital terrain model1 . The underlying isostatic model should be

reasonably realistic and, above all, simple and well defined, such as the

Airy-Heiskanen model.

Then eq. (39) is to be replaced by

(41)

1) Relevant formulas can be found in (Forsberg and Tscherning, 1981)

with references to (MacMillan, 1958, pp. 78-79) and (Jung, 1961,

p. 167).



23

where ETI and 0TI express the deflection effect of the topographic

and compensating masses at points P and P " By (40) we then have
0

0  +TI + ,n - nTI + TI (42)

as the normal curvature component 6X is zero.

Let us repeat once more that n , denote the "geometrical" sur-

face deflections (11) and that 0 ' no denote the deflections of the

vertical on the geoid (and not on the isostatic co-geoid!). Eq. (22) will

then give differences of geoidal heights N

It should be noted, however, that even (41) is only an approximate ex-

pression for the actual plumb-line curvature, an expression which is better

than (39) but nevertheless affected by a certain error.

From a conceptual point of view let us emphasize once more that the

geoidal values &0 no as computed from (42) correspond to actual

gravity anomalies go - Y at the geoid, where go denotes actual gravity

at the geoid (inside the masses) as provided by the reduction of Poincarf

and Prey (PG, p. 146). Topographic-isostatic reduction has only been an

auxiliary device to compute o ' in a better way. In the next sec-

tion we shall, however, use isostatic reduction in a way that is analogous

to classical geoid determination by gravity reduction.
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6. Determination of the Co-geoid

The application of topographic-isostatic reduction, described in the

preceding section, admits of an interesting alternative variant. In the

preceding section, the isostatic co-geoid was mentioned to provide a con-

ceptual background, but it was not used explicitly since C. ' no were

applied to determine the geoid directly. The alternative approach to be

described now determines first the isostatic co-geoid, from which the geoid

is obtained by taking into account the indirect effect. This approach

fully corresponds to classical gravimetric geoid determination by isostatic

gravity reduction (PG, Secs. 3-6 and 8-2).

In the three-step approach described in the preceding section we will

only perform Step 1 -- removal of topography plus isostatic compensation in

their effect at P -- and Step 2 -- free-air reduction from P to P0  by

applying the normal plumb-line curvature 5 . The third step --

restitution of topography -- will be omitted. The result is thus

c= + ¢n = n-nTl
o TI ' no (43)

it gives boundary values since after the removal of topographic masses, sea

level represents a boundary of the solid earth. More exactly, tiis bound-c c
ary surface is the isostatic co-geoid. The deflections o , n oc as

given by (a3) are the precise equivalent of isostatic gravity anomalies

Lg 0 Lg (PG, p. 140) and likewise refer to the co-geoid.

Then it is possible to apply the Helmert formula (22) to Eo0 no

to obtain differences of co-geoid heights Nc

N c ,- C (44)N8 - A = d
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with 0

C C Cs (45)
E: =COSL +lsflcxE0  0 0.

From the co-geoid obtained in this way we get the actual geoid by ap-

plying the indirect effect; cf. PG, p. 141. Thus, the geoidal height N

follows from
S

N = NC + 6N (46)

For the indirect effect 6N , an application of the Bruns formula (6) 5

gives

To  .
6N TI (47)

Y p

0
where TTI denotes the potential of the topographic masses together with

their isostatic compensation, taken at the geoidal point P . This0

potential is computed similarly as the effect of the topographic-isostatic

masses on the gravity anomaly and on the deflection of the vertical.

If we have applied this procedure correctly, we should theoretically

get the same result for the geoidal height N as if we had used the

Helmert integration of the vertical deflections °  , no  given by (42). .

Thus the indirect effect 6N must satisfy the relation

SNB - 6NA : - (Tlcosat + n',sinct)ds (48)

For the present method, this result is of little use since SN is computed

directly from (47); perhaps it could be used for checking purposes.
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An advantage of the present procedure is the fact that the isostati-

cally reduced vertical deflections o , being much smaller and

smoother, can he interpolated better than the surface values , q and

also better than the geoidal values o 9 no . Being only an es-

sentially equivalent modification of the procedure of Sec. 5, it shares,

however, its main drawback: the application of the normal plumb-line

curvature reduction 60 is problematical.

hI

p
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7. Topographic-Isostatic Reduction from a Modern Point of View

For the reasons mentioned at the end of the preceding section, it is

natural to try and find a way which makes use of the clear advantages of

the topographic-isostatic reduction but avoids the problems inherent in a

free-air reduction from P to P0

For this purpose let us once more consider eqs. (43) but interpret

them differently. We shall put

C .TI +  C =  1 (49)

By means of (18) this may be written

Ec : TI ' n -nTI (50)

The interpretation of (50), however, is clear, simple, and rigorous:

from the dynamic deflections of the vertical at P , which are the vpry

quantities T and f , we subtract the effect of the topographic-

isostatic masses, TI and rTI , likewise at P . The vertical de-

flections so obtained, and rF , thus do not really refer to the

(co-)geoid; in reality, they refer to the earth's surface!
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But what, then, means the normal plumb-line curvature 60 in (49)?

Does it not mean a reduction from the earth's surface to sea level? No, in

eqs. (18) it only denotes the transformation between the geometrical and

the dynamical deflection of the vertical, both referred to the point P of

the earth's surface. This is also clear from Fig. 1, which illustrates the

formula

(51)E= E + 6 51

extending (18) to an arbitrary azimuth, 6 being defined by (20).

This interpretation of (49) or (50) as isostatically reduced de-

flections of the vertical at the earth's surface is exact, whereas the

interpretation of (43) as deflections at the co-geoid was only approximate.
c C

Therefore we now have written n , C instead of our former notation
C c
10 P 0o "This is the desired rigorous interpretation of our

isostatically reduced vertical deflections.

This interpretation exactly corresponds to the modern view of gravity

reduction according to the theory of Molodensky as described in PG, sec.

8-11. According to this view, the isostatically (or in some other way)

reduced gravity anomalies continue to refer to the earth's surface. The

classical gravity reduction (PG, sec. 8-2) had comprised two procedures:

mass transport and shift P - P ; the new view of gravity reduction only
0

considers the mass transport; the problematic shift P P0 is avoided.

Formally, a "normal free-air reduction":

F - h (52)
3h

may he said to occur also in Iolodensky's theory: normal gravity Y in

the new definition (8) of the gravity anomaly, where it refers to the

telluroid point Q , is computed by
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Y Y + h , (53)

with h = QoQ denoting the normal height of P But instead of re-

ducing actual gravity g downward, from P to P , now normal gravity

is reduced upward. Whereas for the first process the use of the normal

gradient ay/ah is problematic, it is fully justified for the second

process.

In a similar way, we might, if we wish, interpret 6q as a reduction

of 0 for normal curvature of the plumb-line upwards, say, from Po to

P . This is possible because in (15), could be said to refer to P'

(because Po and Po practically coincide), and because T denotes the

latitude of the tangent to the normal plumb line at P . This inter-

pretation is instructive because of the analogy with gravity reduction,

though regarding and T as geometric and dynamic latitude of the same

point P appears more natural. p

As pointed out above, the present interpretation of Ic and rc as

isostatically reduced deflections of the vertical at the earth's surface is

conceptually rigorous and therefore also practically more accurate, hut

this decisive advantage implies a computational drawback if integration

along a profile is used; since this integration must now he performed along

the earth's surface and not along a level surface such as the geoid, com-

putation will be more complicated. Instead of the simple Helmert formula

(22) we now must use the Molodensky formula (2Q):

c c B e. - dh (54)B " A =  f "f

with

: Ccosx + ncsino

P
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gC being the isostatically reduced surface value of gravity (measured --

value g minus attraction of the topographic-isostatic masses).
C

From the isostatic height anomalies c obtained in this way, we then

get the actual height anomalies by applying the indirect effect:

c + (56)

with

T TI (57)

Y

This is completely analogous to (46) and (47), but now TTI is the

potential of the topographi--isostatic masses at the surface point P

As a matter of fact, normal gravity in (47) refers to the ellipsoid, and in

(57), to the telluroid, but the difference is generally small.

For higher mountains, the isostatic reduction procedure described in

the present section is preferable in practice to a direct application of

?1olodensky's formula (29) because the isostatically reduced vertical de-

flections are much smoother and easier to interpolate. It is, however, ex-

tremely laborious from a computational point of view since the integration

must be performed along the earth's surface (or, what is practically the

same, along the telluroid).

The procedure described in Sec. 6 is easier and less laborious since

the integration is performed along a level surface. It is, however, not

rigorous theoretically and less accurate practically. Now we can also

understand the error inherent in the procedure of Sec. 6: the isostatic-
C Cally reduced deflections c n0  at sea level are by (43) simply put

equal to the corresponding surface deflections (49). In reality, however,
c C , C

n and 0 n 0~ are related by analytical continuation and by no
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means identical. For the concept of analytical continuation cf.( PG, sec.

8-10 and p. 324); for the magnitude of the effect of analytical

continuation on C see Sec. 10.

Finally, we remark that the computational drawback of the present

method, the Molodensky integration along the earth's surface, can be

completely avoided if we perform our computations in space: instead of

integrating along a surface, we perform collocation in space. This modern

procedure, to be described in the next section, permits a simple and

computationally convenient use of surface deflections and also their S

combination with gravimetric and other data.

9
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3. Least-Squares Collocation

The principle of collocation is very simple. The anomalous potential

T outside the earth is a harmonic function, that is, it satisfies

Laplace's differential equation

AT = a 2T + D2T + 32T = 0 (58)

ax2  ay2 az2

An approximate analytical representation of the external potential T is

obtained by

T(P) I f(P) = kk(P) (59)

that is, by a linear combination f of suitable base functions I1
*2 , . . . , q with appropriate coefficients bk . All these

are functions of the space point P under consideration.

As T is harmonic outside the earth's surface, it is natural to

choose base functions 4k which are likewise harmonic, so that

(60)

p0

in correspondence to (58).

There are many simple systems of functions satisfying the harmonicity

condition (60), and thus we have many possibilities for a suitable choice

of hase functions ck . We might, for instance, choose spherical harmon-

ics or potentials of suitahly distributed point masses, depending on

whether we emphasize global or local applications.
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The coefficients bk may be chosen such that the given ohser- 0

vational values are reproduced exactly, for instance, all deflections of

the vertical in a given area. This means that the assumed approximating

function f in (59) gives the same deflections of the vertical at the ob-

servation stations as the actual potential, and hence may well he con- A

sidered a suitable approximation for T

Let us now try and put these ideas into a mathematical form.

Interpolation. Let errorless values of T be given at q spatial

points P1  , P2  , . . . , Pq ; these points may lie on the 0

earth's surface or in space above the earth's surface. We put

T (P .) : f i i = 1, 2, ... , q , (61)

and postulate that in approximating T(P) by f(P) , the observations

(61) will be reproduced exactly. The condition for this is

q
-bk '(P') : T(P.) :fi (62)

k=l 1'1

whence the system of linear equations,

q

k=Aik bk =fi with Aik (Pi) (63)

or in matrix notation,

(64)A b =f .'

If the square matrix A is regular, then the coefficients hk are uni-

quely determined by

a-. '

A
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b =A- f (65)

This model is suitable, for instance, for a determination of the geoid

by satellite altimetry, since this method, rather directly, yields geoidal

heights Ni and hence, hy Bruns' theorem (6), T(Pi) = yiNi

For the astrogeodetic geoid determination we must generalize this model,

which leads us to

Collocation. Here we wish to reproduce, by means of the approximation

(59), q measured values which again are assumed to be errorless (this as-

sumption is not essential and will he dropped later). These measured

values are assumed to be so-called linear functionals LIT , L2T

LqT of the anomalous potential T

In fact, deflections of the vertical,

1 T I aT (66)
Y x ' y

hut also gravity anomalies,

-T T (67)

are such linear functionals; here, xyz denotes a local coordinate system

in which the z-axis is vertical upwards and the x and y axes are

directed towards north and east, and R = 6371km is a mean radius of the

earth. Eq. (66) is a consequence of (25), with 3s = ax or ay ; normal

gravity Y may he considered constant with respect to horizontal de-

rivation. Eq. (67) is the well-known fundamental equation of physical

geodesy in spherical approximation (PG, p. 298 and 88); the equiations (66)

and (67) refer to the earth's surface.
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By saying that deflections of the vertical and gravity anomalies are

linear functionals of T , we simply indicate the fact that ,

Ag depend on T by the expressions (66) and (67) which clearly are

linear; they are, of course, the linear terms of a Taylor expansion,

neglecting quadratic and higher terms. In the above notation LiT , the

symbol Li denotes, for instance, the operation

L a 
(68)

y ax

applied to T at some point.

Putti ng

Lif = LT Z 2. (69)

and substituting (59) we get

SBi kbk = with B (7() .

Lipk denotes the number obtained by applying the operation Li to

the base function Ok ; the coefficient Bik obtained in this way

does not depend on the measured values. Eq. (70) is a linear system of q

equations for q unknowns, which is quite similar to (63). This method of

fitting an analytical approximating function to a number of given linear

functionals is called collocation and is frequently used in numerical

mathematics.

It is clear that interpolation is a simple special case of col- -

location, in which

Lif = f(P) 
(71)

I'I
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is the "evaluation functional", giving the value of f at a point

Pi Thus we see that in both interpolation and collocation, the

coefficients bk require the solution of a linear system of equations

(which in general will not be symmetric).

Least-squares interpolation. Let us consider a function

K = K(P,Q) ,(72)

in which two points P and 0 are the independent variables. Let this

function K be

- symmetric with respect to P and Q

- harmonic with respect to both points, everywhere outside a certain

sphere, and

- positive-definite

(the positive definitiveness of a function is defined similarly as in the

case of a matrix). Then the function K(P,Q) is called a (harmonic)

kernel function; cf, (Moritz, 1980, p. 205). A kernel function K(P,Q)

may serve as "building material" from which we can construct base

functions. Taking for the base functions the form

(73)
OR(P) = K(P,PR) 

(

where P denotes the variable point and Pk is a fixed point in space,

we obtain least-squares interpolation.

This name originates from the statistical interpretation of the kernel

function as a covariance function; then least-squares interpolation has

some minimum properties (least variance, similarly as in least-squares

adjustment). This interpretation is not essential, however; one may also

work with arbitrary analytical kernel functions, considering the procedure

as a purely analytical mathematical approximation technique. Normally one

tries to combine both aspects in a reasonable way.
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Substituting (73) into (63) we get

Aik =K(Pi,P)=Ci (74)
ik k 1k

this square matrix now is symmetric (in the general case, Aik is not

symmetric!) and positive definite (because of the corresponding properties

of the function K(P,Q) ). Then the coefficients bk follow from (65)

and may be substituted into (59). With the notation

k(P) = K(P,Pk) = CPk 
(75)

the result may be written in the form

c11 c12 -. cq -1
f(P) [Cl Cp2 ... Cpq- 2q .2 , (76) p

Cqi Cq2 ... Cqc f

q q2 qq q

known from least-squares interpolation of gravity (PG, p. 268).

Least-squares collocation. Here we again derive the base functions

from a kernel function K(P,Q) , but in a way slightly different from

(73): we put

(P)= LQK(P,Q) , (77)

where LkQ means that the functional Lk is applied to the vari- Ik_

able Q ; the result no longer depends on Q (since the application of a

functional results in a definite number). Thus we must in (7n) put

Bik L L K(P,Q) C (78) R_

i3_-
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which gives a matrix which again is symmetric. Solving (70) for bk

and substituting into (59) gives with

k(P) = LQK(P,Q) = Cpk (79)

the formula

-l £C11 C1 2 . C lq 1

f(P) [C p 2 1 2 2  2 (80)
Pq

Cql Cq2*..Cqq q -'

This is formally the same expression as (76), but with fi replaced by

Zi and with "covariances" Cik and Cpi defined by (78) and

(79).

In the statistical interpretation, f(P) is an optimal estimate (in

the sense of least variance) for the anomalous potential T and hence for

the height anomaly C = T/y on the basis of arbitrary measuring data. For

geoid determination in mountain areas, relevant measuring data primarily

are , n , and 6 . The covariances Cik and Cpi are given

by known analytical expressions (Moritz, 1980, sec. 15). A general com-

puter program for collocation is described in (Sunkel, 1980).

Least-squares collocation may easily be generalized to observational

data affected by random errors; systematic effects may also be taken into

consideration. In addition to the estimated quantities ( f in our pre-

sent case) we may also compute their standard error hy a formula similar to

(80). A comprehensive presentation of a least-squares collocation may be

found in (Moritz, 1980).
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9. Application of Collocation to Geoid Determination

It is well known that the direct interpolation of free-air gravity

anomalies (which essentially are surface gravity anomalies (8)) in high

mountains, e.g. by least-squares interpolation, leads to relatively poor

results, because of the correlation of the free-air anomalies with ele-

vation (PG, sec. 7-10). This correlation with elevation constitutes a con-

siderable trend, which must be removed before the interpolation. Bouguer

anomalies take care of the dependence on the local irregularities of ele-

vation; isostatic anomalies are, in addition, also largely independent on

the regional features of topography (PG, p. 285).

In exactly the same way we must remove the main trend of the vertical

deflections n , and the gravity anomalies Ag by an isostatic re-

duction, before applying collocation. Thus isostatic reduction, pragmatic-

ally regarded as trend removal, is essential for the practical application

of least-squares collocation in mountainous regions (Forsberg and

Tscherning, 1981).

Physically speaking, we transport the topographic masses to the inter-

ior of the geoid in such a way that the isostatic mass deficiencies are

filled. The observation point P remains in its position on the earth's

surface. In this way, not only the harmonic character of the anomalous

potential T outside the earth's surface is preserved, but, in addition,

the computational removal of the topographic masses above sea level makes

the function T harmonic down to sea level. Hence, the collocation

formula (80) can be applied also at sea level, giving co-geoid heights

Nc . By applying the inverse reduction (the indirect effect) to the

computed height anomalies c and co-geoid heights Nc we get actual

C and N . It can be expected that errors in the isostatic model used

(e.g., an Airy-Heiskanen model) will largely cancel in this combined pro-

cedure of reduction and "anti-reduction."

The procedure is theoretically optimal and well suited for computer

use. The integrability conditions, which in Helmert integration are

-4 i " , i . - . .. - . Z • _ . _ -
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represented by the closures of the individual triangles, are automatically

taken into account. The fact that the deflections of the vertical are

given only in a certain region has the effect that the geoid can only be

computed in that region. Since even by collocation, differences in geoidal

height between two neighboring stations A and B depend essentially only

on the deflections in those two stations, the lack of data outside the re-

gion under consideration will hardly cause a noticeable distortion. Note,

however, that the addition of a constant to all geoidal heights N will

not affect the deflections of the vertical; hence, astrogeodetic data de-

termine the geoidal heights only up to an additive constant. This constant

may be chosen such that the average value of the computed N is zero, and

the result of collocation comes near to this case.

To get immediately nearly geocentric geoidal heights it is appropriate

to take into consideration a global trend which mainly affects C and N

itself, by subtracting the effect of a suitable global gravity field, say

the gravity earth model (given as a spherical-harmonic expansion up to de-

gree 1800 x 1800) of Rapp (1981), following Sunkel (1983). This %ill be

described in the next section; in the present section we shall limit

ourselves to the isostatic reduction.

Computational procedure. It consists of the following steps:

1. Transformation of the astrogeodetic surface deflections , -

frolm the local datum used for the geocentric Geodetic Reference System 1980

by the well-known differential formulas of Vening Heinesz (PG, sec. 5-9).

This is necessary since collocation requires a reference system which is as

realistic as possible.

2. Application of the normal plumb line curvature (16) to the
"geometric" surface deflections i , n gives the "dynamic" surface de-

flections 4 , n by (15).

3. Computation of the gravity anomalies Ag , also referred to the

earth's surface according to (8).

4. The topographic-isostatic reduction of A , , Ag by (50)

and PG, eq. (8-94) gives values Cc , nc , Agc which, of

course, continue to refer to the surface point P
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5. The application of collocation to C , b , gives

height anomalies i$ and co-geoid height Nc , by simply varying the

elevation parameter ( H and zero , respectively) in the collocation

program.

6. By applying the indirect effect (57) and (47) we get actual

height anomalies and geoidal heights N

a

S _
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10. Geoid Computation for Austria

Sunkel (1983) has used least-squares collocation to calculate the

geoid for the main part of Austria. In addition to the isostatic reduction

according to Airy-Heiskanen (T = 30km) , he also removes a global trend

by means of a earth gravity model, represented by a spherical-harmonic

expansion up to a certain degree N . In particular, he used the model of

Rapp (1981) with N = 180

After removing the topographic-isostatic trend TTI and this global

trend TN ( EM denotes earth model), there remains a residual anomalous
EM

potential 6T , given by

N N (81)6T =T- TTI - TEM + TI

Since the earth model potential TN is represented by a spherical-

harmonic expansion up to degree N , it may be appropriate to consider,

for the isostatic reduction, only the effect for degrees N > 1800

replacing TTI by

TN (82)
(TTI)N>I80° :TTI TI

where TN represents a spherical-harmonic expansion for TTI truncated
TI

at degree N = 180 . This explains eq. (81).

The observations 9i : ( , , Ag ) , which represent

linear functionals LiT ,are reduced in the same way, obtaining

~..-LN rN LT .(83)

i iTTI LiT EM +Li TI i
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Adding the earthmodel reduction to the computational procedure outlined at

the end of the preceding section, we thus have the following flow 
diagram:

(LiT) observations referred to

Geodetic Reference System 1980

reduction -L.(T + TN TN

TI, EM i TI EM TI

4.0

(LsT

collocation
II

inverse reduction +T TN T"N
TI, EM TI EM TI

T p

N : (T/y) , = (T/y)
0 h

9--
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Data. The topography in Austria is rather varied, with elevations up

to 3800m . The density of astrogeodetic stations was 10 to 20 km ; the

total number of deflections data used was 521 . No gravity anomalies

were used in this first computation.

The topographic-isostatic reduction of the deflections of the vertical

was made using a rather crude digital terrain model consisting of mean ele-

vations for 20" x 20" rectangles. It has been obtained by digitizing a

map 1:500000 . The standard error of this model is on the order of

+100m . Investigations have shown that, in spite of its poor accuracy,

the model is reasonably adequate for reduction of deflections of the verti-

cal (it is totally inadequate for gravity!). In fact, the reduction error

for n , is approximately proportional to terrain inclination; it is

thus very small if the deflection station is situated in an area of

inclination zero. This is the case not only if the station lies in a

horizontal plane, hut also if it lies on the top of a mountain, as most de-

flection stations do.

For the collocation computation, the covariance function of Jordan and

Heller (1978) was used for reasons of simplicity. The parameters of this

function were determined from the data.

Results. It turned out that almost all of the signal (T, N, 4)

comes from the topographic-isostatic model and the N = 180 gravity model

used. This part, TI + EM , lies between 41.5m and 47.5m . The

contribution of collocation (y-1 T) lies between +0.5m , after

removal of a pronounced trend on the order of 3m

The efficiency of topographic-isostatic reduction can also he seen

from the fact that topographic-isostatic has reduced the variance of the

deflectinns of the vertical in Austria (the square of the average size of

and n ) from 30 arcsec2 to 5 arcsec2

Of considerable interest is the effect of analytical continuation on

the isostatically (+EM) reduced anomalous potential T . It is ex-

pressed hy the difference y-1 T at the earth's surface minus y-l T

at sea level. This difference reaches a maximum of 13 cm in the Central

Alps and is otherwise positive and negative.

II
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Of even greater interest is the difference hetween height anomalies

( : y'T at the earth's surface) and geoidal heights N ( y-T at -

sea level) . The maximum of 35cm for - N is reached at the - -

Grossglockner mountain (H = 3800m) . The results are in good agreement

with the approximate formula (PG, p. 327)

- N = -(981gal) -1 Ag8H

where AgR is the Bouguer anomaly in gal and H is the elevation in the

same units as C and N .

A comprehensive information on the geoid in Austria, with regard to

both observations and computations, can be found in (Lichtenegger, et al.,

1983), of which the main results have also been presented in English at the p

XVIII General Assembly of IUGG/IAG in Hamburg, August 1983 (Bretterbauer,

1983; Erker, 1983; Grasegger, et al., 1983; Haitzmann, et al., 1983).

I--

a-- -
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